
Find out how Data-Driven Engineering
Leadership has transformed hundreds
of organizations worldwide.

“All software companies reach a certain scale
where it becomes increasingly di� cult to write
code and release new product. I can’t imagine a
company like ours operating without Pluralsight”
Mathew Spolin, VP Engineering, AppDirect

“Pluralsight Flow’s metrics really get to the heart
of helping ensure my team is e� ective.”
Michael Baj, CTO, 128 Technology

“Within days Pluralsight Flow was transformational
for me as a manager. Now I can accurately assess
how my team is doing.”
Ivana Naeymi-Rad, VP Engineering, IMO

“We could not scale without Pluralsight Flow.
We just would not have the visibility we need to
tell us when we are making a wrong turn.”
Adam Abrevaya, VP Engineering, CloudHealth by vmware

“There is no other platform that provides workfl ow
and process improvement data like Pluralsight
Flow. We use it to surface insights that drive
continuous improvement.”

Kevin Leclair, Director of Engineering, Aaron’s Inc.

“If we were not using Pluralsight, it would be like
going back to the stone ages. We rely on the met-
rics and the visibility Flow provides us.”

Rob Teegargen, VP Engineering, DealerSocket

A fi eld guide to help you recognize achievement, spot
bottlenecks, and debug your development process with data

20 patterns to
watch for in your
engineering team

20
 P

atterns to
 W

atch fo
r in Yo

ur E
ng

ineering
 Team

A field guide to help you recognize achievement, spot
bottlenecks, and debug your development process with data

20 patterns to
watch for in your
engineering team

A field guide to help you recognize achievement,
spot bottlenecks, and debug your development
process with data.

©2019 Pluralsight

20 patterns to
watch for in your
engineering team

Ed 2019_Q4

Table of contents

PART 1

Domain Champion 2

Hoarding the Code 5

Unusually High Churn 8

Bullseye Commits 11

Heroing 13

Over Helping 15

Clean As You Go 18

In the Zone 20

Bit Twiddling 22

The Busy Body 24

PART 2

Scope Creep 27

Flaky Product Ownership 29

Expanding Refactor 31

Just One More Thing 33

Rubber Stamping 35

Knowledge Silos 37

Self-Merging PRs 40

Long-Running PRs 42

A High Bus Factor 44

Sprint Retrospectives 46

Introduction

At Pluralsight we believe effective engineering
managers are also effective debuggers.

Effective managers view their teams as complex
interdependent systems, with inputs and outputs.
When the outputs aren’t as expected, great managers
approach the problem with curiosity and are relentless
in their pursuit of the root cause. They watch code
reviews and visualize work patterns, spotting
bottlenecks or process issues that, when cleared,
increase the overall health and capacity of the team.

By searching for “why,” they uncover organizational
issues and learn how their teams work and how to
resolve these problems in the future.

20 patterns is a collection of work patterns we’ve
observed in working with hundreds of software teams.
Our hope is that you’ll use this field guide to get a
better feel for how the team works, and to recognize
achievement, spot bottlenecks, and debug your
development process with data.

PART 1
Work patterns exhibited
on an individual level

PATTERN 01

Domain Champion

1. Domain champion

The Domain Champion is an expert in a particular
area of the codebase. They know nearly everything
there is to know about their domain: every class,
every method, every algorithm and pattern.

In truth, they probably wrote most of
it, and in some cases rewrote the same
sections of code multiple times.

The Domain Champion isn’t just “the
engineer who knows credit card
processing”; it’s all they ever work on.
It’s their whole day, every day.

Some degree of job specialization is
essential and often motivating. But
even within specialized roles there can
be ‘too much of one thing.’ Managers
must balance enabling a team member
to unilaterally own the expertise, and
encouraging breadth of experience.

How to recognize it
Domain Champions will always work
in the same area of code. They’ll
also rewrite their code over and over,
and you’ll see it in churn and legacy
refactoring metrics as they perfect it.

Domain Champions are deeply familiar
with one particular domain. As a result,
they’ll typically submit their work in
small, frequent commits and will show a
sustained above average Impact.

Because no one else knows more than
the Domain Champion, there’s usually
very little actionable feedback that

others can provide in the review process.
As a result, Domain Champions will
typically show low Receptiveness in
incorporating feedback from reviews.

Domain Champions will seldom, if ever,
appear blocked. Short-term, it’s a highly
productive pattern. But it’s often not
sustainable and can lead to stagnation,
which of course can lead to attrition.

Primary Focus

What to do
Assign tickets that focus on other areas
of the codebase.

Of course, some engineers would prefer
to stay where they are. It can be very
enjoyable to do a task you’re good at.
And, it can be uncomfortable to take on
work that requires information or skills
you have less practice with. But effective
managers will strive to challenge
their team.

 320 patterns to watch for in your engineering team

Start a new conversation in your next
one-on-one:

1. Acknowledge their expertise and
encourage them to share that
expertise with others. Ask them
who, if anyone, would benefit from
participating in code reviews in the
domain to learn best practices.

2. Ask them what they like to work
on — first generally, then specifically.

3. Ask them if they are willing to take
on a small assignment outside their
domain in part to help share the best
practices they’ve developed refining
the code in their domain.

Inch the engineer out of their domain
using small, low-risk tickets. A little bit of
diversification can go a long way toward
minimizing attrition risk and maximizing
best practices.

 420 patterns to watch for in your engineering team

PATTERN 02

Hoarding the Code

2. Hoarding the Code

This pattern refers to the work behavior of repeatedly
working privately and hoarding all work in progress to
deliver one giant pull request at the end of the sprint.

It’s not uncommon for programmers to
wait until their work is done to share
it. In creative and research-intensive
fields, it can be a natural tendency to
avoid sharing work when it’s only just
started. There are plenty of reasons why
this might be: a fear of having others
judge the work in progress, a fear of
others taking ideas, or a desire to make
the whole process seem effortless, to
name a few.

Whatever the reason, the heart of the
problem is this: the more an individual
saves up their work, the less they
collaborate with others. Working alone
is inherently riskier than working with
others. And software engineering is a
team sport.

This tendency to work privately
and then submit work all at once
doesn’t just limit and slow down the
individual — it’s damaging to the team’s
progress as a whole. Submitting work
all at once means that there weren’t any
opportunities for collaboration along
the way. Even more, once the work was
submitted, someone else had to review
all of that work. So naturally, this work
behavior can also lead to lower quality
code — both from the Submitter’s
standpoint (who didn’t check in their
work early to get feedback or notice
potential missteps), and the Reviewer’s
perspective (who likely doesn’t have
enough time or energy to adequately
review all of that code).

When you see large and infrequent
commits, first consider the pattern’s
duration (have we seen this pattern
for years, or has it only recently been
visible?). This information can help
determine whether this is the engineer’s
preferred way of working, or if this is
caused by something outside the normal
development process.

M Tu W Th F

Eng 1

Eng 2

CODE COMMITS
THIS WEEK

How to recognize it
Large and infrequent commits can be
a sign that the engineer is working
privately until their project is finished,
and then submitting their work
all at once.

This pattern is typically first seen in the
Work Log report but is also identifiable
in the team’s Review Workflow. These
PRs are larger and usually come later
in a sprint or project. Because of this,
they’ll typically either take a longer time
to review (relative to the team’s average)
or will get a lower level of review (see
Review Coverage).

 620 patterns to watch for in your engineering team

It’s also common for these engineers to
show lower than average Receptiveness
in the Submit Fundamentals. When
people work in isolation, only submitting
it for review once they’ve decided it’s
the ‘right’ solution later in the sprint, it’s
generally much more difficult to take
feedback on that work objectively.

What to do
Above all else, be compassionate. Odds
are, you’ve recognized this pattern
right before or just after the end of a
sprint, so these engineers are likely
tired, stressed, and worn out. Make
sure they get the time and space they
need to recover from delivering such a
big payload.

This can be great timing for an
impromptu and informal 1:1. Going on a
walk or getting coffee, for example, can
keep the conversation casual. Get them
talking about their latest project, ask
what went well and what didn’t, and
recognize their achievement.

Along the way, bring up the topic of
team collaboration, and how saving work
until it’s completed leaves little room
for learning from others throughout
the process. When teams do work
together throughout a project, they can
learn from each other’s perspectives,
reduce uncertainty and move faster,
and even find improved solutions to the
problem. In practice, that might look like
submitting work far before the engineer
thinks it’s ready for a review.

 720 patterns to watch for in your engineering team

PATTERN 03

Unusually High Churn

3. Unusually High Churn

Churn is a natural and healthy part of the development
process and varies from project to project. However,
Unusually High Churn is often an early indicator that a
team or a person may be struggling with an assignment.

In benchmarking the code contribution
patterns of over 85,000 software
engineers, Pluralsight’s data science
team identified that Code Churn levels
frequently run between 13-30% of all
code committed (i.e., 70-87% Efficiency),
while a typical team can expect to
operate in the neighborhood of 25%
Code Churn (75% Efficiency).

Testing, reworking, and exploring
various solutions is expected, and these
levels will vary between people, types
of projects, and stage in the software
lifecycle. Given the variance, becoming
familiar with your team’s ‘normal’
levels is necessary to identify when
something is off.

Unusually high churn levels aren’t a
problem in themselves. More likely, there
are outside factors causing the problem.

An unusually high level of churn can be
indicative of one of three behaviors:

 n Perfectionism: When an engineers’
standards of “good enough” are not
aligned with the company’s standard
of “good enough.” Engineers keep
going back into the code to rewrite it
because they think it can and should
be better but may not add much to
the actual functionality of the code.

 n They’re struggling with the problem
at hand. This situation manifests
differently than with Hoarding
the Code (pattern #2), because
in this case, the engineer initially
thought they had correctly solved
the problem, perhaps even sent it
off for review, and then discovered
it needed to be rewritten. Not just
touched up. Rewritten.

 n Or, most commonly, issues
concerning external stakeholders.
We see this with unclear or
ambiguous specs, late arriving
requirements, or mid-sprint updates
to the deliverables.

How to recognize it
This pattern is characterized by high
levels of churn in the back of the sprint
or project. Watch for churn rates that
climb significantly above the engineer’s
historical average (see the Snapshot
and Spot Check reports), pairing that
information with where they are in
a project.

Code
Churn

Productive
Throughput

 920 patterns to watch for in your engineering team

What to do
Churn is normal in lots of situations.
Redesigns, prototypes, and POCs are
all examples where you would expect
to rewrite large chunks of code. So
when you notice unusually high churn,
take into consideration whether this
is routine or something’s off. If it’s
the latter:

Determine whether an external
stakeholder is driving the situation. If so
(and the engineer has verified that this is
causing the higher levels of churn), then:

1. Show the data. Show how late
arriving specs or last-minute changes
are throwing the project off.

2. Pull the ticket from the sprint, or
decide on an MVP and split off the
additions into a refinement sprint.

If an external stakeholder is not driving
the Unusually High Churn, call in
the cavalry!

It is usually preferable to be coached by
a fellow engineer or team lead instead of
a manager.

1. Ask for a pre-submit code review or
a rubber duck.

2. Ask to split the work. The act of
dividing the work often reveals the
root issue.

3. Ask a more senior engineer to assess
what “good enough” is in the context
of the project.

4. If the problem is difficult, or if the
domain is unfamiliar, bring in another
engineer to pair program.

 1020 patterns to watch for in your engineering team

PATTERN 04

Bullseye Commits

4. Bullseye Commits

This pattern is relatively common in most teams, but it
often goes unrecognized: an engineer understands a
problem, breaks down the project into smaller tasks,
and submits code that has little room for improvement.

Most likely, not all of the commits that
make up the project will be Bullseyes.
But the ones that are, generally have
a small to modest impact and were
thoroughly reviewed and approved on
the first try. Celebrate them!

How to recognize it
In practice, Bullseye Commits can be
identified by when they were submitted
in regard to the deadline, their impact,
and how they were treated in the
review process. Generally, the code was
started and completed in advance of
the deadline, with negligible churn. The
commit’s Impact was small to modest in
size and was then thoroughly reviewed.
It was approved on the first try (see
Review Workflow).

It’s the level of thoroughness in the
review that distinguishes Bullseye
Commits from Rubber Stamping
(Pattern #15). In Bullseye Commits,
code reviews are substantive.

PR Merged

PR Opened

Review and Comment

Eng 2

Eng 1

RespondsEng 1

Eng 2

Review and CommentEng 3

What to do
Recognize a clean bullseye in a stand-
up, or a simple note: “I saw that check-in,
nice job!” Whether it’s public or private,
showing that you noticed and that you
care will only reinforce this pattern.

If there’s an engineer who regularly
makes Bullseye Commits, it may be
helpful for others to understand
how they approach projects. Ask
the engineer to do a lunch and learn,
or consider asking them to provide
feedback on another engineer’s work
in the review process.

 1220 patterns to watch for in your engineering team

PATTERN 05

Heroing

5. Heroing

Right before a release, the “Hero” finds some critical
defect and makes a diving catch to save the day.
More formally, Heroing is the reoccurring tendency
to fix other people’s work at the last minute.

Granted, a good save is usually better
than no save. But regular Heroing leads
to the creation of unhealthy dynamics
within the team or otherwise encourages
undisciplined programming. Some team
members even learn to expect them to
jump in on every release.

Heroing can be a symptom of poor
delegation or micro-management. It also
points to trust issues on a number of
levels. The Hero will ultimately undermine
growth by short-circuiting feedback loops
and, over time, can foster uncertainty and
self-doubt in otherwise strong engineers.
At its worst, the Hero feeds a culture of
laziness: everyone knows the Hero will “fix”
the work anyway so why bother. Ironically,
those last-minute fixes are the genesis of
a lot of technical debt.

How to recognize it
The Hero typically dominates Pluralsight
Flow’s Help Others metric, particularly in
the form of late arriving check-ins. They’re
also distinguishable in the review process,
where they may be self-merging PRs (and
typically right before the deadline), or
they will show very low Receptiveness in
the review process (meaning either others
aren’t providing substantial feedback or
the Hero isn’t incorporating it).

It can be hard to disagree with their
changes — especially with these changes
being made so late in the sprint. This is
partly why the Hero’s PRs usually show
a very low level of engagement in the

review process (see the Review and
Collaboration metrics).

Review Coverage

Release

Helping Others

TIME

T
E

A
M

W
O

R
K

What to do
Rather than managing the ‘saves,’ manage
the code review process.

Ideally, team members are making small
and frequent commits and requesting
interim reviews for larger projects. If
that’s not the case, consider working
toward that goal first. It’ll help to get the
Hero’s feedback early, even before the
code is done.

When the team is in the habit of getting
feedback early and often throughout
a project, as opposed to submitting
massive PRs all at once, the barrier to
participating in the review process is
lower. This can make it easier to promote
healthier collaboration patterns and get
everyone — especially the Hero — to give
and be receptive to feedback in reviews.
Coach the Hero to turn their ‘fixes’ into
actionable feedback for their teammates.

 1420 patterns to watch for in your engineering team

PATTERN 06

Over Helping

6. Over Helping

Collaboration among teammates is a natural and
expected part of the development process. Over
Helping is the pattern whereby one developer
spends unnatural amounts of time helping another
developer to get their work across the line.

Engineer One submits. Engineer Two
cleans it up, over and over again. This
behavior can be normal on small
project-based teams. But when that 1-2-
1-2 pattern doesn’t taper off, it’s a signal
that should draw your attention.

The problem is threefold: (1) always
cleaning someone else’s work takes
away from one’s own assignments, (2)
it impairs the original author’s efforts
toward true independent mastery, (3) it
can overburden the helper and leave the
original author in a continuous unnatural
waiting state.

How to recognize it
You’ll notice this pattern in the same
way you’d realize “Heroing” (Pattern
#5) in Pluralsight Flow’s Review and
Collaboration reports and the Help
Others metric. Look for reoccurring, last-
minute corrections between the same
two people.

In the Review and Collaboration and
Operational reports, you’ll notice these
two consistently review each other’s
work. One engineer will have a high
Help Others, but it’s not reciprocated.
The “load-bearing” engineer will also
show high levels of Influence and Review
Coverage. The other engineer will not.
One engineer will have a high Impact;
the other won’t.

This behavior can be perfectly healthy
and expected when in a mentorship-
type situation. But beyond a certain
point, rotation is in order.

Eng 1 Eng 2

Disproportionate Help
and Code Review

 1620 patterns to watch for in your engineering team

What to do
Bring additional engineers into the
code review process. A side effect
of this solution is that by increasing
the distribution of reviews, you’re
strengthening the team’s overall
knowledge of the codebase (see
Knowledge Sharing).

Cross-train and assign both engineers to
different areas of the codebase.

Assign the senior engineer a very
challenging project. The idea here is to
give them challenging projects where
they don’t have the time or energy to
review their colleague’s work.

Lastly, the stronger of the two is
showing natural leadership and coaching
tendencies. Look for opportunities
to feed this more broadly to the
whole team.

One note of caution: be mindful when
the two engineers are friends or were
colleagues at a former employer. Making
light of a friendship or teasing them can
be incredibly damaging and hurtful. Go
the extra mile to keep it professional.

And, as always, be transparent. You’re
not trying to split up friendships. It’s the
manager’s job to ensure that knowledge
of the codebase is distributed evenly
across the team and to ensure that
people are honing their craft and
growing their careers.

 1720 patterns to watch for in your engineering team

PATTERN 07

Clean As You Go

7. Clean As You Go

A codebase is continuously evolving by nature, but it
doesn’t evolve evenly across all aspects. A Clean As
You Go engineer will notice and refine shortcomings
even if it’s not essential to the task at hand.

This pattern of continually improving the
code adjacent to the code the engineer
is working on is a fantastic pattern to
encourage.

“Fixing” work certainly doesn’t get the
attention that “feature” work does, in
part because there’s rarely that “ta-da”
moment. While the activity of regularly
fixing existing code while working on
other tasks can be much less visible and
recognizable than working on new code,
this engineer’s contribution is invaluable.

How to recognize it
“Clean As You Go” refers to when an
engineer contributes new code and
also mends adjacent code in the
codebase. Consequently, you’ll notice
these engineers writing new code while
also showing higher levels of legacy
refactoring, that together usually exceed
the expected scope of change for the
assignment at hand.

New Work

6%

52%

31%

11%

Legacy Refactor

Help Others

Churn

TEAM
AVG.

WORK FO CUS

What to do
Recognize this engineer’s work publicly
and use it as a model for other team
members to work towards. Regularly
acknowledge it in sprint retrospectives
and standups, even after you first
observe the pattern. Consistent
acknowledgment lets everyone know
you value this effort.

Encourage this engineer to formalize
their work pattern with documented
coding standards (e.g., naming
conventions, getter/setters, preferred
patterns for ORM work, etc.)

A little bit of encouragement can go a
long way to minimizing tech debt, and
the engineers who Clean As They Go
can help demonstrate how these best
practices look.

 1920 patterns to watch for in your engineering team

PATTERN 08

In the Zone

8. In the Zone

This pattern is exhibited by engineers whose
work is, in a word, consistent. They have a
knack for getting in the zone and shipping high-
quality work week in and week out. Their work is
reliable and predictable in nearly every way.

Professional software development is
an endurance sport. To create lasting
enterprise value, you must show up
every day and produce quality work.
Real value creation can take years.

It’s tempting to think of this as a person
and not a pattern. However it’s useful
to depersonalize this engineer’s work
as a pattern — it’s easier for others to
model discrete behaviors than it is to
model a person.

How to recognize it
An engineer in the zone organizes their
day to eliminate distraction and focus on
delivering business value. Their Active
Days are consistently above average.
Their Impact is high and consistent. Their
PRs are timely, evenly paced, and nicely
sized. They consistently participate in
reviews, so their Involvement is high and
consistent. Their churn is usually lower
than average.

What to do
Similar to engineers who exhibit the

“Clean As You Go” pattern, it helps
to acknowledge this pattern either
publicly, privately, or both. Emphasize
their consistency and how great code
is built not in a single sprint or pulling
all-nighters. The Work Log and Review
and Collaboration reports will show this

pattern over time, and they can be used
to support the story (e.g., “six weeks of
committing code every day is something
to admire”).

M Tu W Th F

Eng 1

Eng 2

COMMITS PRs TICKETS

If increasing overall team velocity is
important to you, helping everyone
on your team find their zone is a
foundational place to start.

An essay from Paul Graham, titled
“Maker’s Schedule, Manager’s Schedule”
offers context and strategies for
blocking meetings and creating space to
get in the zone.

Small changes in scheduling and
reduction of interruptions can amount
to significant increase in capacity.
Furthermore, consistently getting in
the zone allows your team to ship at a
sustainable pace without suffering from
the burnout of heroic sprints.

 2120 patterns to watch for in your engineering team

http://www.paulgraham.com/makersschedule.html

PATTERN 09

Bit Twiddling

9. Bit Twiddling

Bit Twiddling is like working on jigsaw puzzle to the
point where everything looks the same and you’re
not making progress anymore. You might pick up
the same piece, try it in a few places, rotate it, put
down, only to pick it up a few minutes later.

Bit Twiddling reveals itself when an
engineer is unwaveringly focused on a
single area of the codebase for a very
long time, making only slight changes
here and there. This often happens
because the engineer doesn’t fully
understand the problem or the context
for making the change.

They may be losing steam and
motivation, or are at high risk for
doing so.

How to recognize it
Look for high rates of churn in the
same area of the code. The key is to
couple repetition and refactoring with
ambivalence or indifference in code
review over an extended period.

For example, watch for a standard
library call, or otherwise stable code,
get refactored into customized code for
some difficult to articulate optimization.
Or, watch for code that gets refined
and refactored multiple times with
disinterest — light code review and PRs
with generic submitter comments like

“refactoring,” “reorganizing,” or “touch
up,” followed by “LGTM”.

Could be Stuck

HIGH
CHURN

LOW
CHURN

HIGH IMPACT

LOW IMPACT

What to do
Look for ways to reenergize the engineer
with a new project. Find a ticket, even
a small one, that will lead into new and
interesting areas of the code — even if
it comes at the expense of the team’s
productivity in the short-term.

Creative workers thrive when tackling
new and challenging problems, even
if they at first balk at working outside
their area of expertise. New experience
typically leads to learning something
new, a process most engineers enjoy.

 2320 patterns to watch for in your engineering team

PATTERN 10

The Busy Body

10. The Busy Body

The Busy Body is an engineer who skips all
over the codebase: they’ll fix a front-end
problem here, jump to some refactoring, then
fiddle with the database over there.

Their work is always lightweight and
shies away from heavier problems. This
behavior can be perfectly normal over
short periods or in isolated instances.
And, in fact, some shifting around
is healthy.

But the Busy Body is problematic over
a long period because these engineers
end up without a strong sense of
ownership. There’s nothing for them to
point at and say, “I made that.” Even if
they can solve a wide range of problems,
lacking something that they own can
lead to attrition.

How to recognize it
Engineers exhibiting this pattern will
show high levels of Impact and lots
of small pull requests without any
identifiable home base in the code.
They’ll show a high level of Involvement
in the review process. And because they
typically spend their time building and
spend less time bug fixing their own
work, they’ll show high levels of new
work and relatively low churn.

These dynamics are often first identified
in the Player Card report or in the team’s
Submit and Review Fundamentals.

The
Busy Body

A
R

E
A

S
 O

F
 S

P
E

C
IA

L
IZ

A
T

IO
N

D OMAIN KNOWLED GE

What to do
Give these engineers something to
own top to bottom. Whether it’s a
module, a new feature, or a large
project, ask them to do more than just
‘get it done’. Ask them to become an
expert in that particular area or on that
specific project.

Then, double down on their strengths
in that area: assign them the 1.1 version,
the bug fixes, the unit tests, and the
documentation, then give them the 1.2
and 1.3 versions as well. Allow them the
opportunity to get to know their domain,
to work with it, to teach others about
it, and to develop a mastery. Ask them
to give a presentation on the project
to highlight lessons learned and best
practices. The key is to nurture a true
sense of ownership.

 2520 patterns to watch for in your engineering team

PART 2
Work patterns exhibited
on a team-wide level

PATTERN 11

Scope Creep

11. Scope Creep

Intuitively, we all know what Scope Creep
is — along with its associated risks. Still, there
are plenty of different definitions for the
issue so here’s what we’re focusing on:

Scope Creep (noun): a pattern
whereby the originally agreed upon
scope increases or changes after
implementation has begun. Often,
though not always, Scope Creep
happens incrementally and thus invisibly.

Using data to make Scope Creep
visible to all parties can help mitigate
the risks of unexpected work, and can
also be used to combat this pattern
moving forward.

Even in the most well-defined projects,
out-of-scope tasks arise. As a manager,
you need to watch for runaway
situations where engineers are being
asked to shoulder an unreasonable
increase in scope.

How to recognize it
Scope Creep is characterized by a sharp
uptick in progress toward the back of a
sprint that wasn’t driven by code review.

Generally, the problem a team is solving
should be getting smaller over time as
features are completed. So a sudden
spike in activity, particularly in the later
stages of a project, tends to be a signal
that something new came in.

When you see this occurrence become a
pattern sprint over sprint with the same

team, look to the external stakeholders
that interface with that team to see what
might be causing the issues.

ReleaseTIME

C
O

M
P

L
E

X
IT

Y

Good

Bad

What to do
Use Pluralsight Flow data to show the
additional work caused by the scope
creep. Scope creep is caused by poor
planning and insufficient attention
during design. It’s not the engineer’s
responsibility to shoulder the work
resulting from bad specs. Call it out!
Let the people who are responsible
for pushing a poorly designed project
into implementation know that it’s
simply not ok.

Then show them how much additional
work their carelessness caused. Show
them the data. This more than anything
will make the true consequences of
scope creep visible and thus actionable.

 2820 patterns to watch for in your engineering team

PATTERN 12

Flaky Product Ownership

12. Flaky Product Ownership

Miscommunications between Product and Engineering
can easily lead to Scope Creep. Flaky Product
Ownership, however, can show up slightly different in
the data and also generally requires a different approach.

There are two important behaviors that
fall under this category:

 n A Product Owner submits
incomplete requirements,
leading to extra engineering
time spent toward filling
in the gaps or resulting in
‘miscommunications’ later on.

 n A Product Owner changes their
requests after implementation
began, leading to missed
deadlines.

How to recognize it
This pattern tends to reveal itself in
recurring scope creep driven by the
same product owner. You may notice a
significant expansion of code that wasn’t
driven by code review in the back of
the sprint.

T
IC

K
E

T
 J

IT
T

E
R

0

+

-

Frequent
Mid-Stream
Changes

What to do
Ambiguous or changing requirements
from a Product Owner can often be
a sign that that person is stretched
thin. They have too much to work on,
so nothing gets their full attention.
It’s helpful, for that reason, to have a
discussion with their manager. Bringing
data to the discussion can eliminate
skepticism around what’s happening and
help cut straight to the discussion about
how to resolve the situation.

The handling of the situation should
generally be left to the Product Owner’s
manager. If it’s an issue of too much
work, it can help to eliminate the
individual’s work in progress. Otherwise,
it may simply require coaching around
any areas they tend to overlook when
creating specs.

 3020 patterns to watch for in your engineering team

PATTERN 13

Expanding Refactor

13. Expanding Refactor

Expanding refactors happen when a planned
effort to improve or revise a section of code
triggers a dramatic widening of scope.

What was intended as an optimization
exercise, becomes a wholesale rewrite.

How to recognize it
A small amount of legacy refactoring
is healthy. It’s when you notice a whole
slew of changes in areas that are
unrelated to the feature at hand.

Look at the Work Log for outsized
code commits in sets of files that seem
completely unrelated to the feature at
hand. Talk to the engineer, expanding
refactors are rarely driven by the
product teams.

TIME

New Work

Legacy
Refactoring

W
O

R
K

 F
O

C
U

S
 %

What to do
Open the topic up for discussion with
the team. Ask team members to make
a case for and against the refactor,
and then come to a conclusion about
whether it’s best to move forward with
the project, drop it, or tackle it with a
different approach.

It can also be useful to provide
standards around what success
is — what “done” looks like. That way,
everyone’s clear around what the project
is and isn’t, and so the expanding
refactor doesn’t consume too much of
your team’s time and energy.

 3220 patterns to watch for in your engineering team

PATTERN 14

Just One More Thing

14. Just One More Thing

“Just One More Thing” refers to the pattern
of late-arriving pull requests. A team submits
work, but then—right before the deadline—they
jump in and make additions to that work.

Sometimes only one or two individual
contributors will show this pattern, but
that generally points to behaviors that
require a different approach. But when
the majority of the team is submitting
PRs right before a deadline, it can
mean there are larger process or even
cultural issues that are causing an
unpredictable workflow.

This pattern can occur for a wide range
of reasons, including last minute requests,
poor planning or estimates, and too much
work in progress.

ReleaseTIME

P
R

s
S

U
B

M
IT

T
E

D

How to recognize it
“Just One More Thing,” when appearing
across a team, is characterized by a spike
in PRs being submitted near the end of
a sprint after the main PR was approved.
These engineers will also show a high level
of New Work.

What to do
Late-arriving PRs are a sign that work is
being rushed and given less review. Even
when the work is submitted by engineers
who are very familiar with the code, the
PRs should be treated as riskier than
other equally sized PRs that are submitted
earlier in the sprint.

When you notice a spike in PRs being
submitted, it can be helpful to review the
work submitted and decide whether it
should be given an extra day’s review.

Longer-term, consider working with
the team to identify any bottlenecks or
process issues that could be eliminated
or improved.

 n If the team’s estimates or deadlines
are causing last-minute stress,
consider setting internal deadlines
for projects. Another framework that
some teams use is to consider ‘the
three levers’ in setting a deadline: the
external deadline (if any), the scope
of the project, and resources available.
It’s typically not realistic to change
one without having to change the
others, so it can help the planning
process to take all three variables
into account.

 n If last-minute requests are coming in
from outside the team, talking to the
managers whose groups are regularly
causing the problem can give you the
opportunity to show the impact of the
problem and understand what’s going
on from their perspective.

 3420 patterns to watch for in your engineering team

PATTERN 15

Rubber Stamping

15. Rubber Stamping

Rubber Stamping is the process by which
an engineer approves their colleague’s PR
without giving it a substantial review.

Often, the Submitter will have some level
of seniority in the team, and the Reviewer
trusts that the work is good enough. In
other situations, someone doesn’t value
code review, or everyone just ran out
of time and felt the need to push the
PR through.

In any case, the code review process has
a wide range of benefits and outcomes:
teams see improved code quality, increased
knowledge transfer within and across
teams, more significant opportunities
for collaboration and mentorship, and
improved solutions to problems. So when
an individual submits code for review and
no review is given, we sacrifice all of these
outcomes for short-term efficiency.

How to recognize it
Rubber Stamping is most noticeable in the
Review and Collaboration reports. Watch
the Review Workflow for PRs that opened
and closed in a preposterously short
period of time, with a very low level of
Receptiveness. Low levels of engagement
in reviews can also be seen in the
Involvement and Review Coverage metrics.

When review happens later, as opposed to
right after the PR is opened, there will be
little to no back-and-forth in the comments
(see the PR Resolution report). If there were
no comments on the PR, this PR will show
as Unreviewed.

The Team Collaboration metrics will also
provide insight into the time and energy
that team members are allocating toward

the review process over any given time
period. These reports will help watch and
manage the trends in the long-term.

“LGTM”

3 Commits, 5 Files A�ected
++95 Lines, -- 67Lines

PR Merged

PR Opened

Eng 2

Eng 1FRI 4 :55 PM

4:5 8 PM

What to do
While reviewing other people’s work is a
substantial part of what it means to be
a professional software developer, it’s
not always recognized as such. Rubber
Stamping often occurs in environments
where the review process is given little
attention or recognition; when leadership
praises the behaviors they want to see in
code reviews, we generally see that the
way people work will shift to match those
expectations.

On an individual level, it can be helpful to
coach team members on what substantial
reviews look like in practice by showing
examples from others on their team. Try
deconstructing the feedback together in
a 1:1, so engineers leave the meeting with
a framework they can use moving forward.
If there are specific engineers who are
frequently given less review, take into
consideration how they’re responding to
any feedback in the process, how large
their PRs are, or the time at which their
PRs are submitted.

 3620 patterns to watch for in your engineering team

PATTERN 16

Knowledge Silos

16. Knowledge Silos

Knowledge Silos are usually experienced between
departments in traditional organizational structures,
but they also form within teams when information
is not passing freely between individuals.

In software engineering, Knowledge
Silos can be identified in the code
review process. Knowledge Silos form
when a group of engineers only review
each other’s work. Imagine two or three
engineers who review all of each other’s
PRs, and don’t review anyone else’s PRs
on their team. These engineers learn
about each other’s work and techniques,
and the areas of the code that they’re
working in. Other engineers on the team
who aren’t part of the silo don’t have
that same level of information.

There are plenty of reasons why
engineers will get into a cycle of only
reviewing each other’s work — figuring
out the reasons why, through discussions
with the team and by reviewing
the Team Collaboration metrics, can
sometimes point you toward the broader
team dynamics at play. For example,
if these engineers only want to work
together because everyone else is slow
to review their code, consider setting
expectations around Time to First
Comment, and Reaction Time.

When knowledge silos exist for an
extended period of time, they can often

begin to show signs of Rubber Stamping.
Reviewing a select group of engineer’s
work for a long time can lead to less
substantial reviews simply because the
engineers trust that each other’s work is
good enough. When that happens, these
situations can turn into bug factories.
Work is being approved and pushed
forward without adequate evaluation.

M
O

R
E

 R
E

V
IE

W
L

E
S

S

D ISTRIBUTEDCONCENTRATED
KNOWLED GE

How to recognize it
When team members are co-located, a
basic understanding of where people
sit in an office along with an awareness
of any other social bonds can be helpful
indicators as to where silos may form.

 3820 patterns to watch for in your engineering team

You can also use the Knowledge Sharing
report to visualize how knowledge
is being distributed across a team in
the review process and to identify
knowledge Silos. If there are two or
three people who only review each
other’s code, the team’s Knowledge
Sharing Index will trend toward 0. If
the majority of the team reviews
each other’s code, the Index will
trend toward 1.

You can then drill down into specific
team dynamics with the Review
Radar. When there are Silos, there will
be a small group of engineers that
review only each other’s work across
multiple sprints.

What to do
Bring in the outsiders! One of the most
natural ways to manage this pattern is to
look for outliers and stranded engineers
and get those individuals involved in
the review process. You can also see
whether there’s anyone who could be
cross-trained or onboarded on a specific
area of the code that an engineering
within the silo is working on.

Assign other engineers to review the
work of the individuals that make up
the silo, and have the individuals within
that tight-knit group review the work of
others outside their group.

 3920 patterns to watch for in your engineering team

PATTERN 17

Self-Merging PRs

17. Self-Merging PRs

This pattern refers to when an engineer
opens a pull request and then approves it
themselves. This means no one else reviewed
the work and it’s headed to production!

As a general rule, engineers shouldn’t
merge their own code. In fact, most
companies don’t permit them to: self-
merging bypasses all forms of human
review, and can easily introduce bugs.

If the code is worth putting on the main
branch, it is worth having someone
review it.

How to recognize it
Self-merging is easy to see because
the submitter and the reviewer are the
same people. In Pluralsight Flow these
instances will show up in the team’s
Unreviewed PRs metric as well as in their
Review Workflow.

PR Opened PR Merged

Unreviewed

What to do
Many organizations prevent self-merging
PRs by configuring their build systems
to reject them. Enforced review is most
common among companies that work
under regulatory compliance, like fintech

or biotech companies. Self-merging
represents a material security risk to the
company, no matter how talented an
engineer is.

But even in organizations that don’t
enforce review, managers should be
in the know when these situations do
happen. Reviewing these PRs on a
case-by-case basis, even though they’re
being reviewed after they’ve have been
merged, will help ensure that any bugs
or problems are not going to get buried.

If the commit was trivial, you might be
able to give QA a heads-up to take a
close look at it. If the unreviewed pull
requests are non-trivial, walk those back
if the circumstances allow it and require
a code review.

Reducing the frequency of unreviewed
and self-merged pull requests is a best
practice (Unreviewed PRs should be
0%, or close to it). If engineers are in
the habit of self-merging without review,
it may be helpful to have an informal
conversation with them to ensure
that they understand the ‘why’ behind
getting the review process or at least
clear on expectations. If they’re more
senior, encourage them to follow the
best practice of getting code thoroughly
reviewed by others, so other engineers
will model that behavior.

 4120 patterns to watch for in your engineering team

PATTERN 18

Long-Running PRs

18. Long-Running PRs

Long-running pull requests are PRs that have
been open for a very long time (more than
a week). A PR that doesn’t close in a normal
amount of time (within a day) can indicate
uncertainty or disagreement about the code.

Often in long-running PRs, you’ll notice
a few back-and-forth comments, then
radio silence.

Apart from the possible disagreement
or confusion amongst the team, long-
running PRs are also themselves a
problem. A PR that is a week old can
quickly become irrelevant, especially in
fast-moving teams. Long-running PRs
can also become bottlenecks.

Recently Opened

Smallest

Biggest

Least Activity

Most Activity

Sort PRs by: Oldest

How to recognize it
Long-running PRs can quickly be
identified in the team’s Review Workflow
report, filtered by ‘PR Status: Open’ and
sorted by ‘oldest PRs’. Select the number
of PRs you’d like to see in one view, then
hover over those that have been open
for more than a day.

If you see a few back-and-forth
comments with signs of uncertainty or
disagreement in their communication,
followed by silence, it’s worth checking
in to see how you can move the
conversation forward.

What to do
It’s usually best to first check in with
the Submitter. It’s their responsibility
to get their work across the line, so
they should be encouraged to bubble
up disagreements or uncertainties as
they arise. If there is a disagreement,
get their read on it and offer advice
to move it forward. Depending on the
situation, get the Reviewer’s read on
it as well — ideally when everyone is
together in a room or on a call. Make a
decision, and ask anyone that disagrees
to ‘disagree and commit’.

To manage this pattern in the long-
term, consider setting expectations or
targets around Time to First Comment,
and Time to Resolve. It’s also helpful
to communicate best practices around
timely response — when it takes
engineers a day to respond to feedback
(see Responsiveness), that can mean
there’s a lot of time spent waiting on
others, and the communication isn’t
timely enough to be as effective as it
otherwise could be.

 4320 patterns to watch for in your engineering team

PATTERN 19

A High Bus Factor

19. A High Bus Factor

“Bus factor” is a thought experiment that asks what
the consequence would be if an individual team
member were hit by a bus. More specifically:

Bus factor (noun): The number of team
members that need to get hit by a bus
before your project is doomed to fail.

Having a low bus factor is risky. A High
Bus Factor means that there is a greater
distribution of knowledge and know-
how about the code across the team.
When more than one engineer knows
about each area of the team’s code,
there’s more optionality for managers to
assign tasks and more people that can
provide substantial reviews, reducing the
possibility of bottlenecks to a release.

For example, if three engineers know
how to work in the billing system, a
manager can assign a task in that
domain to any of those three engineers.
Contrarily, if there are knowledge silos,
or if only one engineer has experience
working in the billing system, the
manager will have difficulty assigning
those tasks to any other engineer.

How to recognize it
A team’s distribution of knowledge
can be visualized with the Knowledge
Sharing Index. It’s best to use this
report within teams that you would
expect to review each other’s work. A
low Index means that there is a lower
distribution of knowledge across a
team, representing a higher bus factor
risk. This also means there may be
silos forming; a high Index represents
a greater distribution of knowledge
across the team.

Furthermore, it helps to start with the
Index to get a high-level understanding
and then drill down into specific team
dynamics. If the Index is trending
downward, check to see if team
members are getting into a cycle of only
reviewing each other’s work.

K
N

O
W

L
E

D
G

E
 S

H
A

R
IN

G 100%

0

50%

TIME

What to do
Knowledge distribution can be achieved
when team members are making small
and frequent commits, and there’s a
healthy level of collaboration and debate
in reviews from everyone on the team. It
can be helpful to keep this in mind when
providing feedback in 1:1s and when
onboarding new hires to the team.

When you see a low Sharing Index
(i.e., a low bus factor, higher risk), see
the Review Radar for opportunities to
get team members more involved in
the review process. When you see the
behavior you want to see in the review
process, consider recognizing that in a
team-wide meeting.

 4520 patterns to watch for in your engineering team

PATTERN 20

Sprint Retrospectives

20. Sprint Retrospectives

Retrospectives are a common practice that offer an easy
way to continuously improve: take time to reflect, as an
individual or a team, on a project, action, or occurrence.

While reflecting on the goals of the
sprint, what actually happened, why
it happened, and planning for what’s
next, use data to provide a more
complete view on the team’s progress.
Instead of looking just at what was built,
look at how it was built. Visualize the
development process and watch for
trends in work patterns across the team
and at the individual level.

How to recognize it
A good Sprint Retrospective uses data
to help people compare what they felt
happened during the sprint and what
actually happened in the sprint.

What to do
As a manager of managers, it helps
to coach managers of individual
contributors on the practice of including
data in their retrospectives.

If there are specific work patterns you
see in the team that you either want to
see more of or want to manage away
from, consider showing them what those
behaviors look like in the data, how to
watch for them, and what to do when
they see them.

Learn Measure

Build

FEEDBACK
LO OP

Encourage them to include data in
discussions with you, and with others
in the organization, and show them
how to do so.

In short, Sprint Retrospectives are
about watching for and managing
work patterns. It’s about recognizing
achievement, spotting bottlenecks, and
debugging the development process
with data.

 4720 patterns to watch for in your engineering team

About Pluralsight

Pluralsight gives you confidence you have the skills and insights you need to execute
your technology strategy. You can upskill your teams into modern tech roles, improve
workflow efficiency and build reliable, secure products. We are the technology skills
platform.

By leveraging our Skills product, which includes expert courses, skill assessments and
one-of-a-kind skills and role analytics, you can keep up with the pace of change, put the
right people on the right projects and boost productivity. With our Flow product, you can
debug your development processes with objective data, identify bottlenecks and keep a
pulse on the health of your software teams.

Used together, they empower you to develop, measure and deploy critical skills at scale
and improve engineering effectiveness.

Visit pluralsight.com to learn more

01.

03.

02.

04.

Engineering leaders have
been operating in the dark.

For many organizations, software
engineering is one the most expensive and
mission-critical departments. Companies
invest millions of dollars in software
engineering without a feedback loop to
understand how well we’re doing or where
to focus on improvement.

Get deep visibility into
your development process.

Flow instruments the tools in your
development workflow—from commit
data, pull requests, tickets, and more—to
provide actionable insight into individual
and team workflows.

Flow turns the lights
on with objective data.

Flow generates actionable metrics to
optimize release processes, improve
collaboration workflows and remove
bottlenecks, while creating unprecedented
visibility for all levels
of management.

Turn workflow data into
operational improvement.

Flow gives software leaders a fact-based
view of effectiveness and performance—
with prescriptive metrics to drive process
improvement. The end result is improved
quality, more time spent coding, healthier
distribution of knowledge, and faster time
to market.

Flow gives you confidence you can accelerate velocity by having
visibility into and across your software engineering teams.

“All software companies reach a certain scale where it becomes
increasingly difficult to write code and release new product. I can’t
imagine a company like ours operating without Pluralsight”

Mathew Spolin, VP Engineering, AppDirect

“Pluralsight Flow’s metrics really get to the heart of helping ensure
my team is effective.”

Michael Baj, CTO, 128 Technology

“Within days Pluralsight Flow was transformational for me as a
manager. Now I can accurately assess how my team is doing.”

Ivana Naeymi-Rad, VP Engineering, IMO

“We could not scale without Pluralsight Flow. We just would
not have the visibility we need to tell us when we are making a
wrong turn.”

Michael Baj, CTO, 128 Technology

“There is no other platform that provides workflow and process
improvement data like Pluralsight Flow. We use it to surface insights
that drive continuous improvement.”

Kevin Leclair, Director of Engineering, Aaron’s Inc.

“If we were not using Pluralsight, it would be like going back to
the stone ages. We rely on the metrics and the visibility Flow
provides us.”

Rob Teegargen, VP Engineering, DealerSocket

Find out how Data-Driven Engineering
Leadership has transformed hundreds
of organizations worldwide.

	PART 1
	Domain Champion
	Hoarding the Code
	Unusually High Churn
	Bullseye Commits
	Heroing
	Over Helping
	Clean As You Go
	In the Zone
	Bit Twiddling
	The Busy Body
	PART 2
	Scope Creep
	Flaky Product Ownership
	Expanding Refactor
	Just One More Thing
	Rubber Stamping
	Knowledge Silos
	Self-Merging PRs
	Long-Running PRs
	A High Bus Factor
	Sprint Retrospectives

